用AI生成数据训练AI或导致模型崩溃,原始内容9次迭代后成了“胡言乱语”

科技工作者之家  |   07月26日 09:13

科技日报记者 张梦然

《自然》24日正式发表的一篇研究论文指出了一个人工智能(AI)严重问题:用AI生成的数据集训练未来几代机器学习模型,可能会严重“污染”它们的输出,这被称为“模型崩溃”。研究显示,原始内容会在9次迭代以后,变成不相关的“胡言乱语”(演示中一个建筑文本最终变成了野兔的名字),这凸显出使用可靠数据训练AI模型的重要性。

研究模型测试。
图源:《自然》

生成式AI工具越来越受欢迎,如大语言模型等,这类工具主要用人类生成的输入进行训练。不过,随着这些AI模型在互联网不断壮大,计算机生成内容可能会以递归循环的形式被用于训练其他AI模型或其自身。

包括英国牛津大学在内的联合团队一直在进行相关研究,并在去年论文预印本中提出这一概念。在正式发表的论文中,他们用数学模型演示了AI可能会出现的“模型崩溃”。他们证明了一个AI会忽略训练数据中的某些输出(如不太常见的文本),导致其只用一部分数据集来自我训练。

团队分析了AI模型会如何处理主要由AI生成的数据集。他们发现,给模型输入AI生成的数据,会减弱今后几代模型的学习能力,最终导致了“模型崩溃”。他们测试的几乎所有递归训练语言模型,都容易出现问题。比如,一个用中世纪建筑文本作为原始输入的测试,到第9代的输出已经是一串野兔的名字。

团队指出,用前几代生成的数据集去训练AI,崩溃是一个不可避免的结局。他们认为,必须对数据进行严格过滤。与此同时,这也意味着依赖人类生成内容的AI模型,或许能训练出更高效的AI模型。

总编辑圈点:

对AI来说,“模型崩溃”就像癌症一样,甚至分早期与晚期。在早期时,被“喂”了生成数据的AI会开始失去一些原始正确数据;但在晚期,被“喂”了生成数据的AI会“口吐狂言”——给出完全不符合现实,也和底层数据一点不相关的结果,就像本文中的例子一样。更可怕的是,“模型崩溃”的AI极其固执,错误几乎难以矫正。它会持续强化,最终把错误结果认为是正确的。这一问题值得所有关注生成式AI的人们警惕,因为它等于是在“毒化”AI对真实世界的认知。


  • 金光
    0
    科技工作者之家是一个很好的学习平台,弘扬科学精神,倡导科学办法!
  • 季丽芬
    0
    普及科学知识,弘扬科学精神,传播科学思想,倡导科学方法。
  • 蔡海峰
    0
    《狱中题壁》近现代·谭嗣同望门投止思张俭,忍死须臾待杜根。我自横刀向天笑,去留肝胆两昆仑。
  • 孙令芳
    0
    用AI生成的数据集训练未来几代机器学习模型,可能会严重“污染”它们的输出,这被称为“模型崩溃”
  • 马清艳
    0
    用AI生成的数据集训练未来几代机器学习模型,可能会严重“污染”它们的输出,这被称为“模型崩溃”
  • 郭非非
    0
    科技工作者之家,学到了很多的知识
  • 林芳茂
    0
    弘扬科学精神,传播科学思想,学习科学知识
  • 王标
    0
    普及科学知识,弘扬科学精神,传播科学思想,倡导科学方法。
  • 朱立华
    0
    科技工作者之家这个学习平台真的让我收获满满
  • 陈小荣
    0
    弘扬科学精神,传播科学思想,学习科学知识
加载更多