肿瘤药敏性检测方法学是抗癌药物评价和筛选的前提,也是临床化疗方案设计的基础。中国科学院青岛生物能源与过程研究所单细胞研究中心开发了基于拉曼组的肿瘤单细胞药敏检测新方法D2O-CANST-R,具有快速、低成本、单细胞器精度、识别耐药细胞、体现抗癌机制、可对接单细胞分选和测序等特色,为癌细胞-药物互作研究、抗癌药物筛选等提供了新手段。
化疗在恶性肿瘤的治疗手段中占重要地位,如使用得当,单纯或辅助化疗即可根治部分肿瘤;对于一些晚期肿瘤,化疗也可用于姑息性治疗。然而,各种肿瘤类型间或不同患者个体间,其药物应激反应均存在显著差异,且化疗过程中耐药细胞的产生会削弱抗癌药物疗效。因此,快速、低成本、可识别耐药细胞、揭示药物应激机制的肿瘤药敏检测方法,对抗癌药物研发和临床精准用药十分重要。
目前,主流的肿瘤药敏检测方法,如比色法、生物发光法、荧光分析法等,通常依赖于终点检测,即区分细胞死活,难以定量、特异性地测量药物对癌细胞的“代谢抑制”程度。同时,基于细胞群体反应的检测手段,难以检测癌细胞群体中极个别的耐药细胞;这些“害群之马”在正常环境下没有生长优势,却耐受高浓度药物,因此可能造成肿瘤死灰复燃,导致临床化疗失败。
针对这一问题,单细胞研究中心科研人员Maryam Hekmatara等以人乳腺癌细胞株(MCF-7)和雷帕霉素的互作为例,开发了重水饲喂单细胞拉曼光谱肿瘤药敏快检技术(D2O-probed CANcer Susceptibility Test Ramanometry;D2O-CANST-R)。结合肿瘤细胞拉曼组采集和多元曲线分辨-交替最小二乘法分析算法(MCR-ALS),研究发现,在1-3天的药物处理后,D2O-CANST-R能特异性地基于“代谢抑制”检测肿瘤药敏性,并能在细胞核、细胞胞质、脂质体等单个细胞器的分辨精度,追踪和区分其中蛋白质与脂质的合成速率和代谢变化,从而揭示药物作用机制。脂质和蛋白质代谢的高度活跃,是肿瘤细胞快速增殖的重要原因,因此,上述能力对于抗癌药物的机制研究和筛选具有重要价值。
基于前期单细胞研究中心提出的“拉曼组”(ramanome)和“药物应激拉曼条形码”(Raman Barcode of Cellular response to stresses;RBCS)等概念,科研人员还揭示了真核生物(人乳腺癌细胞和酵母细胞)之间、细胞器之间、药物浓度之间、药物处理时长之间、生物大分子代谢途径之间等,在单细胞精度代谢应激机制上的异同。因此,D2O-CANST-R还具有高时空分辨率、信息量丰富、揭示代谢层面机制等特点。此外,在高剂量雷帕霉素(500或5000×IC50)处理后,仍存在保持较高代谢活性的癌细胞,即耐药细胞。D2O-CANST-R识别肿瘤耐药细胞和测定耐药异质性的能力,对于药物机制研究、抗癌药物评价和筛选等具有重要意义,并具备辅助精准化疗方案设计的潜在能力。
单细胞研究中心前期针对临床抗感染用药,提出了“重水饲喂单细胞拉曼药敏快检”原理,引入了“最小代谢活性抑制浓度”(MIC-MA)这一衡量药敏性的新概念,发明了“单细胞光镊微液滴拉曼分选”(RAGE)和“单细胞微液滴流式拉曼分选”(RADS)等核心器件,研制出“临床单细胞拉曼药敏快检仪”(CAST-R)和单细胞拉曼分选-测序耦合系统(RACS-Seq)等;针对临床样品,证明了单个细菌细胞精度同时测定抗生素药敏表型和高覆盖度基因组的可行性(Xu T, et al, Small, 2020)。该研究是上述单细胞技术体系针对人体细胞与药物互作的拓展,不仅将服务于肿瘤药物研发、肿瘤精准用药等,而且为肿瘤单细胞分选和多组学研究提供了新的技术路线。
相关研究成果发表在《分析化学》(Analytical Chemistry)上。研究工作由青岛能源所研究员徐健主持完成,得到国家重大科学仪器研制项目(国家自然科学基金委员会)和中科院前沿局人才项目等的资助。
重水饲喂单细胞拉曼光谱肿瘤药敏快检技术D2O-CANST-R
来源:中国科学院
来源:中国科学院
原文链接:http://www.cas.cn/syky/202101/t20210114_4774707.shtml
版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。
电话:(010)86409582
邮箱:kejie@scimall.org.cn