在电场下,力作用于自由电子,使电子朝电场的反向加速运动。根据牛顿第二定律,自由电子应当一直被加速,电流随时间持续增大。但我们知道电流到达一个定值后就不会增大,说明存在一个“摩擦力”反抗着电子的加速。摩擦力来自晶格缺陷对电子的散射,包括杂质原子、空隙、间隙原子、位错甚至原子自身的热振动。每个散射事件都使电子失去动能并改变运动方向。
在一定时间内,电子走过的路径不是其速率与时间的乘积,而是多次散射后走过的净长度。电压越高,散射越频繁;时间越长,散射事件越多;截面积越大,散射频率越低,故电子运动的净路径与电压和时间成反比。由此可定义出未散射事件频率的物理量,称作电子附着系数或电子附着率。
含义能带理论指出,在具有严格周期性势场的理想晶体中的载流子,在绝对零度下的运动像理想气体分子在真空中的运动一样,不受阻力,迁移率为无限大。当周期性势场受到破坏,载流子的运动才受到阻力的作用,其原因是载流子在运动过程中受到了各种因素的散射。1
在有外加电场时,载流子在电场力的作用下作加速运动,漂移速度应该不断增加,电流密度将无限增大。但从欧姆定律可知,在恒定电场作用下,电流密度应该是恒定的。其原因是,在一定温度下,材料内部的大量载流子,即使没有电场作用,它们也不是静止不动,而是永不停息地作着无规则的、杂乱无章的运动,即热运动。同时晶格上的原子也在不停地围绕格点作热振动。对于半导体,其中还掺入一定的杂质,它们一般是电离了的,也带有电荷。载流子在材料中运动时,便会不断地与热振动着的晶格原子或电离了的杂质离子发生作用,或者说发生碰撞,碰撞后载流子速度的大小与方向发生改变。用波的概念,可以认为电子波在材料中传播时遭到了散射。载流子无规则的热运动也正是由于它们不断地遭到散射的结果。所谓自由载流子,实质上只在两次散射之间才真正是自由运动,其连续两次散射间自由运动的平均路程称为平均自由程,而平均时间称为平均自由时间。下图为载流子热运动示意图,在无外电场时,电子虽然永不停息地作热运动,但宏观上没有沿着一定方向流动,所以并不构成电流。
影响因素电子和空穴的有效质量的大小是由半导体材料的性质所决定的。所以不同的半导体材料,电子和空穴的有效质量也不同。平均自由运动时间的长短是由载流子的散射的强弱来决定的。散射越弱,T越长,迁移率也就越高。掺杂浓度和温度对迁移率的影响,本质上是对载流子散射强弱的影响。散射主要有以下三方面的原因:2
1.晶格散射
半导体晶体中规则排列的晶格,在其晶格点阵附近产生热振动,称为晶格振动。由于这种晶格振动引起的散射叫做晶格散射。温度越高,品格振动越强,对载流子的品格散射也将增强。在低掺杂半导体中,迁移率随温度升高而大幅度下降的原因就在于此。
2.电离杂质散射
杂质原子和晶格缺陷都可以对载流子产生一定的散射作用。但最重要的是由电离杂质产生的正负电中心对载流子有吸引或排斥作用,当载流子经过带电中心附近,就会发生散射作用。
3.电离杂质散射
电离杂质散射的影响与掺杂浓度有关。掺杂越多,教流子和电离杂质相遇而被散射的机会也就越多。电离杂质散射的强弱也和温度有关。温度越高,载流子运动速度越大,因而对于同样的吸引和排斥作用所受影响相对就越小,散射作用越弱。这和晶格散射情况是相反的,所以在高掺杂时,由于电离杂质散射随温度变化的趋势与晶格散射相反,因此迁移率随温度变化较小。
本词条内容贡献者为:
任毅如 - 副教授 - 湖南大学