金属氧化物半导体场效晶体管(简称:金氧半场效晶体管;英语:Metal-Oxide-Semiconductor Field-Effect Transistor,缩写:MOSFET),是一种可以广泛使用在模拟电路与数字电路的场效晶体管。金属氧化物半导体场效应管依照其沟道极性的不同,可分为电子占多数的N沟道型与空穴占多数的P沟道型,通常被称为N型金氧半场效晶体管(NMOSFET)与P型金氧半场效晶体管(PMOSFET)。
电路符号常用于金氧半场效晶体管的电路符号有多种形式,最常见的设计是以一条垂直线代表沟道(Channel),两条和沟道平行的接线代表源极(Source)与漏极(Drain),左方和沟道垂直的接线代表栅极(Gate),如下图1所示。有时也会将代表沟道的直线以虚线代替,以区分增强型(enhancement mode,又称增强式)金氧半场效晶体管或是耗尽型(depletion mode,又称耗尽式)金氧半场效晶体管。
由于集成电路芯片上的金氧半场效晶体管为四端组件,所以除了源极(S)、漏极(D)、栅极(G)外,尚有一基极(Bulk或是Body)。金氧半场效晶体管电路符号中,从沟道往右延伸的箭号方向则可表示此组件为n型或是p型的金氧半场效晶体管。箭头方向永远从P端指向N端,所以箭头从基极端指向沟道的为p型的金氧半场效晶体管,或简称PMOS(代表此组件的沟道为p型);反之则代表基极为p型,而沟道为n型,此组件为n型的金氧半场效晶体管,简称NMOS。在一般分布式金氧半场效晶体管组件中,通常把基极和源极接在一起,故分布式金氧半场效晶体管通常为三端组件。而在集成电路中的金氧半场效晶体管通常因为使用同一个基极(common bulk),所以不标示出基极的极性,而在PMOS的栅极端多加一个圆圈以示区别。
几种常见的MOSFET电路符号,加上结型场效应管一起比较:
上图中的金氧半场效晶体管符号中,基极端和源极端均接在一起,一般分立元件的MOSFET几乎均如此,但在集成电路中的金氧半场效晶体管则并不一定是这样连接。通常一颗集成电路芯片中相同沟道的金氧半场效晶体管都共享同一个基极,故某些情况下的金氧半场效晶体管可能会使得源极和基极并非直接连在一起,例如串叠式电流源(cascode current source)电路中的部分NMOS就是如此。基极与源极没有直接相连的金氧半场效晶体管会出现衬底效应(body effect)而部分改变其工作特性。
金氧半场效晶体管的工作原理金氧半场效晶体管的核心金氧半场效晶体管在结构上以一个金属—氧化物层—半导体的电容为核心(现在的金氧半场效晶体管多半以多晶硅取代金属作为其栅极材料),氧化层的材料多半是二氧化硅,其下是作为基极的硅,而其上则是作为栅极的多晶硅。这样的结构正好等于一个电容器,氧化层为电容器中介电质,而电容值由氧化层的厚度与二氧化硅的介电系数来决定。栅极多晶硅与基极的硅则成为MOS电容的两个端点。1
当一个电压施加在MOS电容的两端时,半导体的电荷分布也会跟着改变。
1、累积:考虑一个p型的半导体(空穴浓度为NA)形成的MOS电容,当给电容器加负电压时,电荷增加。
2、耗尽:相反,当一个正的电压VGB施加在栅极与基极端时,空穴的浓度会减少(称为耗尽),电子的浓度会增加。
3、反型:当VGB够强时,接近栅极端的电子浓度会超过空穴。这个在p-type半导体中,电子浓度(带负电荷)超过空穴(带正电荷)浓度的区域,便是所谓的反转层(inversion layer)。
MOS电容的特性决定了金氧半场效晶体管的工作特性,但是一个完整的金氧半场效晶体管结构还需要一个提供多数载流子(majority carrier)的源极以及接受这些多数载流子的漏极。
金氧半场效晶体管的结构如图2是一个n-type金氧半场效晶体管(以下简称NMOS)的截面图。如前所述,金氧半场效晶体管的核心是位于中央的MOS电容,而左右两侧则是它的源极与漏极。源极与漏极的特性必须同为n-type(即NMOS)或是同为p-type(即PMOS)。图2中NMOS的源极与漏极上标示的“N+”代表着两个意义:(1)N代表掺杂(doped)在源极与漏极区域的杂质极性为N;(2)“+”代表这个区域为高掺杂浓度区域(heavily doped region),也就是此区的电子浓度远高于其他区域。在源极与漏极之间被一个极性相反的区域隔开,也就是所谓的基极(或称基体)区域。如果是NMOS,那么其基体区的掺杂就是p-type。反之对PMOS而言,基体应该是n-type,而源极与漏极则为p-type(而且是重掺杂的P+)。基体的掺杂浓度不需要如源极或漏极那么高,故在左图中没有“+”,作为沟道用。
对这个NMOS而言,真正用来作为沟道、让载流子通过的只有MOS电容正下方半导体的表面区域。当一个正电压施加在栅极上,带负电的电子就会被吸引至表面,形成沟道,让n-type半导体的多数载流子—电子可以从源极流向漏极。如果这个电压被移除,或是放上一个负电压,那么沟道就无法形成,载流子也无法在源极与漏极之间流动,也就是可以透过栅极的电压控制沟道的开关。
假设工作的对象换成PMOS,那么源极与漏极为p-type、基体则是n-type。在PMOS的栅极上施加负电压,则半导体上的空穴会被吸引到表面形成沟道,半导体的多数载流子—空穴则可以从源极流向漏极。假设这个负电压被移除,或是加上正电压,那么沟道无法形成,一样无法让载流子在源极和漏极间流动。特别要说明的是,源极在金氧半场效晶体管里的意思是“提供多数载流子的来源”。对NMOS而言,多数载流子是电子;对PMOS而言,多数载流子是空穴。相对的,漏极就是接受多数载流子的端点2。
金氧半场效晶体管的工作模式依照在金氧半场效晶体管的栅极、源极,与漏极等三个端点施加的偏置(bias)不同,金氧半场效晶体管将有下列三种工作模式。下面将以一种简化代数模型来讨论。现代MOS管的特性比这里展示的代数模型更加复杂1。
对于增强型N沟道MOS管来说,这3种工作模式分别为:
1、截止区(亚阈值区或弱反转区)
当 |VGS|
|VGS| 代表栅极到源极的偏置差,|Vth| 为材料的临界电压。这个金氧半场效晶体管是处在截止(cut-off)的状态,沟道无法反转,并没有足够的多数载流子,电流无法流过这个金氧半场效晶体管,也就是这个金氧半场效晶体管不导通。
但事实上,金氧半场效晶体管无电流通过的叙述和现实有些微小的差异。在真实的状况下,因为载流子的能量依循麦克斯韦-玻尔兹曼分布而有高低的差异。虽然金氧半场效晶体管的沟道没有形成,但仍然有些具有较高能量的载流子可以从半导体表面流至漏极。而若是 |VGS| 略大于零,但小于 |Vth| 的情况下,还会有一个称为弱反转层(weak inversion layer)的区域在半导体表面出现,让更重载子流过。透过弱反转而从源极流至漏极的载流子数量与 |VGS| 的大小之间呈指数的关系,此电流又称为亚阈值电流(subthreshold current)。
在一些拥有大量金氧半场效晶体管的集成电路产品,如动态随机存取存储器(DRAM),次临限电流往往会造成额外的能量或功率消耗。3
2、**线性区(**三极区或欧姆区)
当 VGS > Vth 且 VGD > Vth 时:
此处VDS为NMOS漏极至源极的电压,则这颗NMOS为导通的状况,在氧化层下方的沟道也已形成。此时这颗NMOS的行为类似一个压控电阻(voltage-controlled resistor),而由漏极向源极流出的电流大小为:
μn是载流子迁移率(carrier mobility)、W是金氧半场效晶体管的栅极宽度、L是金氧半场效晶体管的栅极长度,而Cox则是栅极氧化层的单位电容大小。在这个区域内,金氧半场效晶体管的电流—电压关系有如一个线性方程式,因而称为线性区。
3、饱和区(放大区)
当 VGS > Vth 且 VGD
这颗金氧半场效晶体管为导通的状况,也形成了沟道让电流通过。但是随着漏极电压增加,超过栅极电压时,会使得接近漏极区的反转层电荷为零,此处的沟道消失(如图),这种状况称之为夹断(pinch-off)。在这种状况下,由源极出发的载流子经由沟道到达夹断点时,会被注入漏极周围的空间电荷区(space charge region),再被电场扫入漏极。此时通过金氧半场效晶体管的电流与其漏极—源极间的电压VDS无关,只与栅极电压有关,主要原因在于靠近漏极区的栅极电压已经不足以让沟道反转,而造成所能提供的载流子有限,限制住了沟道的电流大小,关系式如下:
上述的公式也是理想状况下,金氧半场效晶体管在饱和区工作的电流与电压关系式。事实上在饱和区的金氧半场效晶体管漏极电流会因为沟道长度调制效应而改变,并非与VDS全然无关。考虑沟道长度调制效应之后的饱和区电流—电压关系式如下:
衬底效应一般而言,源极电压与衬底电压两者接在一起VSB=0,但在实际上VSB>0(对P型衬底而言),此时衬底与源极产生逆偏,使得耗尽区电荷增加,因此使临界电压增加的现象称为衬底效应(Body Effect)4。衬底效应通常是负面的,临界电压之变化常会使模拟电路或数字电路设计更加复杂。MOS受到衬底效应影响,临界电压会有所改变,公式如下:
是基极与源极之间无电位差时的临界电压, 是衬底效应参数, 则是与半导体能阶相关的参数。
金氧半场效晶体管在电子电路上应用的优势金氧半场效晶体管在1960年由贝尔实验室的D. Kahng和Martin Atalla首次实现成功,这种组件的工作原理和1947年萧克利等人发明的双载流子接面晶体管截然不同,且因为制造成本低廉与使用面积较小、高集成度的优势,在大规模集成电路或是超大规模集成电路的领域里,重要性远超过BJT。
近年来由于金氧半场效晶体管组件的性能逐渐提升,除了传统上应用于诸如微处理器、微控制器等数字信号处理的场合上,也有越来越多模拟信号处理的集成电路可以用金氧半场效晶体管来实现,以下分别介绍这些应用。
数字电路数字科技的进步,如微处理器运算性能不断提升,带给深入研发新一代金氧半场效晶体管更多的动力,这也使得金氧半场效晶体管本身的工作速度越来越快,几乎成为各种半导体有源组件中最快的一种。金氧半场效晶体管在数字信号处理上最主要的成功来自互补式金属氧化物半导体逻辑电路的发明,这种结构最大的好处是理论上不会有静态的功率损耗,只有在逻辑门的切换动作时才有电流通过。互补式金属氧化物半导体逻辑门最基本的成员是互补式金属氧化物半导体反相器,而所有互补式金属氧化物半导体逻辑门的基本工作都如同反相器一样,同一时间内必定只有一种晶体管(NMOS或是PMOS)处在导通的状态下,另一种必定是截止状态,这使得从电源端到接地端不会有直接导通的路径,大量节省了电流或功率的消耗,也降低了集成电路的发热量。
金氧半场效晶体管在数字电路上应用的另外一大优势是对直流信号而言,金氧半场效晶体管的栅极端阻抗为无限大(等效于开路),也就是理论上不会有电流从金氧半场效晶体管的栅极端流向电路里的接地点,而是完全由电压控制栅极的形式。这让金氧半场效晶体管和他们最主要的竞争对手BJT相较之下更为省电,而且也更易于驱动。在CMOS逻辑电路里,除了负责驱动芯片外负载(off-chip load)的驱动器外,每一级的逻辑门都只要面对同样是金氧半场效晶体管的栅极,如此一来较不需考虑逻辑门本身的驱动力。相较之下,BJT的逻辑电路(例如最常见的TTL)就没有这些优势。金氧半场效晶体管的栅极输入电阻无限大对于电路设计工程师而言亦有其他优点,例如较不需考虑逻辑门输出端的负载效应(loading effect)。
模拟电路有一段时间,金氧半场效晶体管并非模拟电路设计工程师的首选,因为模拟电路设计重视的性能参数,如晶体管的跨导或是电流的驱动力上,金氧半场效晶体管不如BJT来得适合模拟电路的需求。但是随着金氧半场效晶体管技术的不断演进,今日的CMOS技术也已经可以匹配很多模拟电路的规格需求。再加上金氧半场效晶体管因为结构的关系,没有BJT的一些致命缺点,如热破坏(thermal runaway)。另外,金氧半场效晶体管在线性区的压控电阻特性亦可在集成电路里用来取代传统的多晶硅电阻(poly resistor),或是MOS电容本身可以用来取代常用的多晶硅—绝缘体—多晶硅电容(PIP capacitor),甚至在适当的电路控制下可以表现出电感(inductor)的特性,这些好处都是BJT很难提供的。也就是说,金氧半场效晶体管除了扮演原本晶体管的角色外,也可以用来作为模拟电路中大量使用的被动组件(passive device)。这样的优点让采用金氧半场效晶体管实现模拟电路不但可以满足规格上的需求,还可以有效缩小芯片的面积,降低生产成本。
随着半导体制造技术的进步,对于集成更多功能至单一芯片的需求也跟着大幅提升,此时用金氧半场效晶体管设计模拟电路的另外一个优点也随之浮现。为了减少在印刷电路板上使用的集成电路数量、减少封装成本与缩小系统的体积,很多原本独立的模拟芯片与数字芯片被集成至同一个芯片内。金氧半场效晶体管原本在数字集成电路上就有很大的竞争优势,在模拟集成电路上也大量采用金氧半场效晶体管之后,把这两种不同功能的电路集成起来的困难度也显著的下降。另外像是某些混合信号电路(Mixed-signal circuits),如模拟数字转换器,也得以利用金氧半场效晶体管技术设计出性能更好的产品。
本词条内容贡献者为:
李航 - 副教授 - 西南大学