诱出模糊拓扑

科技工作者之家  |   2020-11-17 17:32

诱出模糊拓扑(induced fuzzy topology)是一类特殊的模糊拓扑。它是由给定分明拓扑诱导出的模糊拓扑。设(X,T)是普通的拓扑空间,以ω(T)记从(X,T)到[0,1]上所有下半连续函数的全体,则ω(T)形成X上的一个模糊拓扑,称为T的诱出模糊拓扑。并非所有的模糊拓扑都是诱出模糊拓扑。

诱出模糊拓扑是1975年威斯(Weiss, M.D.)引入的,它是联系分明拓扑与模糊拓扑的一条纽带。

介绍诱出模糊拓扑(induced fuzzy topology)是一类特殊的模糊拓扑。它是由给定分明拓扑诱导出的模糊拓扑。设(X,T)是普通的拓扑空间,以ω(T)记从(X,T)到[0,1]上所有下半连续函数的全体,则ω(T)形成X上的一个模糊拓扑,称为T的诱出模糊拓扑。并非所有的模糊拓扑都是诱出模糊拓扑。

诱出模糊拓扑是1975年威斯(Weiss, M.D.)引入的,它是联系分明拓扑与模糊拓扑的一条纽带。1

模糊拓扑空间模糊拓扑空间是拓扑空间的一种重要推广。指具有由模糊子集族构成的拓扑结构的空间。设J是论域X上的一模糊子集族,若J满足条件:

1.∅,X∈J;

2.对任何U,V∈J,有U∩V∈J;

3.对任何{U}⊂J,有∪α∈AU∈J;

则称J为X上的一个模糊拓扑,并称(X,J)为模糊拓扑空间。J中的元称为模糊开集,简称开集。

模糊拓扑空间这一概念是由张(Zhang, C.L.)在1968年引入的。1976年,罗温(Lowen, R.)将上述模糊拓扑定义中的条件1加强为:

1′.对任何r∈[0,1], r∈J, r表示X上隶属函数取常值r的模糊子集。

这种罗温意义下的模糊拓扑空间也称为满层模糊拓扑空间,它不以分明拓扑空间为特款。2

模糊拓扑学模糊拓扑学是研究和探讨带有层次结构拓扑问题的科学,又称不分明拓扑学或弗晰 (fuzzy) 拓扑学。模糊性数学的分支学科。

1965年,查德 (L.A.Zedeh) 提出的模糊集概念 不仅丰富了经典集合论的内容,也刺激了与集合论关 系密切的拓扑学研究。经过中外学者的努力,现已形 成模糊拓扑学这个生机勃勃的研究领域。不分明拓扑 空间以通常拓扑空间为特款,但层次结构的特点使它 具有了不同于一般拓扑空间的特有风格。在这更一般 的框架下,传统的领域系这个邻近构造出现了严重的 局限。中国学者提出的新的邻近构造——重域系,克 服了这一基本困难。目前,这一领域正结合着若干代 数性质的研究,围绕格上拓扑学这个主题深入展开。 不分明拓扑学的成果已应用于模糊数学的其它理论研 究与实际应用中。

模糊拓扑学的主要研究内容有:①模糊拓扑空间 的一般理论;②连通性问题;③拟一致结构、度量化 及近性结构理论;④分离性问题;⑤紧性问题及 Stone-cech紧化理论;⑥不分明同伦论等。

拓扑空间拓扑空间是欧几里得空间的一种推广。给定任意一个集,在它的每一个点赋予一种确定的邻域结构便构成一个拓扑空间。拓扑空间是一种抽象空间,这种抽象空间最早由法国数学家弗雷歇于1906年开始研究。1913年他考虑用邻域定义空间,1914年德国数学家豪斯多夫给出正式定义。豪斯多夫把拓扑空间定义为一个集合,并使用了“邻域”概念,根据这一概念建立了抽象空间的完整理论,后人称他建立的这种拓扑空间为豪斯多夫空间(即现在的T2拓扑空间)。同时期的匈牙利数学家里斯还从导集出发定义了拓扑空间。20世纪20年代,原苏联莫斯科学派的数学家П.С.亚里山德罗夫与乌雷松等人对紧与列紧空间理论进行了系统研究,并在距离化问题上有重要贡献。1930年该学派的吉洪诺夫证明了紧空间的积空间的紧性,他还引进了拓扑空间的无穷乘积(吉洪诺夫乘积)和完全正规空间(吉洪诺夫空间)的概念。

20世纪30年代后,法国数学家又在拓扑空间方面做出新贡献。1937年布尔巴基学派的主要成员H.嘉当引入“滤子”、“超滤”等重要概念,使得“收敛”的更本质的属性显示出来。韦伊提出一致性结构的概念,推广了距离空间,还于1940年出版了《拓扑群的积分及其应用》一书。1944年迪厄多内引进双紧致空间,提出仿紧空间是紧空间的一种推广。1945年弗雷歇又提出抽象距的概念,他的学生们进行了完整的研究。布尔巴基学派的《一般拓扑学》亦对拓扑空间理论进行了补充和总结。

此外,美国数学家斯通研究了剖分空间的可度量性,1948年证明了度量空间是仿紧的等结果。捷克数学家切赫建立起紧致空间的包络理论,为一般拓扑学提供了有力工具。他的著作《拓扑空间论》于1960年出版。近几十年来拓扑空间理论仍在继续发展,不断取得新的成果。3

本词条内容贡献者为:

尹维龙 - 副教授 - 哈尔滨工业大学