来源:材料科学前沿
研究背景
通过蒸馏和分馏的方式从原油中获取所需要的产品是一个能源密集型的过程。据悉,全球的炼油厂每天需要分馏约一亿桶原油,每年的能耗超过1100太瓦,几乎占全球能源使用量的1%。尽管这种分馏技术能够基于沸点的差异精准获取产品,但科学家依然希望通过使用能耗更低的方法实现上述过程。近年来,聚合物膜分离技术发展迅猛,诸多气体分离膜和海水淡化膜已经投放市场,在实现低能耗的同时获得了良好的经济效益。然而,目前,对于有机混合物高效分离的膜材料较为缺乏,这主要是由于大多数的聚合物膜在分离过程中无法同时实现高通量与高的选择性。
自具微孔聚合物(PIM)结构中具有扭曲的梯形结构,具有较高的客体分子通量,已被广泛应用与气体分离,也被应用于部分有机混合物的分离。然而,这种梯形结构聚合物在接触有机小分子时会发生溶胀,孔径将发生不可逆转的变化,导致其分离选择性大幅度下降。
图文速递
基于此背景,近日,美国佐治亚理工学院的Kirstie A. Thompson等人在国际顶级学术期刊《Science》上发表了名为“N-Aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures”的文章。研究者基于经典的Buchwald-Hartwig胺化反应,选择了一种螺二芴二溴化合物与一系列的芳胺反应,获得了4种不同的新型螺环聚合物(SBAD),如图1A所示。这些聚合物中的螺二芴单元具有较强的刚性和分子间的相互作用,有利于抑制薄膜在有机混合物分离中的溶胀,同时,芳胺以及C-N键的引入可增加链段的部分柔性,有利于适当地提高客体通量,同时增强对部分有机物的亲和力,提高分离的选择性,此外,研究者也制备了传统的梯形自具微孔聚合物薄膜(PIM-1)作为对比。




未来可期
来源:材料科学最前沿 材料科学前沿
原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NDc0NTY4OA==&mid=2247487468&idx=2&sn=0c6f13caa56ddde9a57c3b7c375313e5&chksm=e9c1c2dbdeb64bcdb9fdad9844cf982609649e88e5275efe01b5761d4e4101b4ac0ac069391a#rd
版权声明:除非特别注明,本站所载内容来源于互联网、微信公众号等公开渠道,不代表本站观点,仅供参考、交流、公益传播之目的。转载的稿件版权归原作者或机构所有,如有侵权,请联系删除。
电话:(010)86409582
邮箱:kejie@scimall.org.cn